

SRI BHAGAWAN MAHAVEER JAIN COLLEGE

Vishweshwarapuram, Bangalore.

II PUC MOCK QUESTION PAPERS - 1

Course: II PUC

Subject: Mathematics

Max. Marks: 100

Duration: 3:00 Hrs 15 Mins

Instructions:

- The question paper has five parts namely A, B, C, D and E. Answer all the parts
- Part A has 10 multiple choice questions, 5 fill in the blanks and 5 very short answer questions of 1 mark each
- Part A should be answered continuously at one or two pages of answer sheet and only first answer is considered For the marks in subsection I and II of Part A
- Use the graph sheet for question on linear programming in PART E

PART A

I. Answer ALL the multiple choice questions

 $10 \times 1 = 10$

- 1. Number of binary operations on the set $\{a, b\}$ are
 - (A) 10

(B) 16

- (C) 20
- (D) 8

- 2. If $sin^{-1}(1-x) 2sin^{-1}x = \frac{\pi}{2}$ then **x** is equal to
 - (A) $0, \frac{1}{2}$

(B) $1, \frac{1}{2}$

- (C) 0
- (D) $\frac{1}{2}$
- 3. The number of all possible matrices of order 3×3 with entry 0 or 1 is
 - (A) 27

(B) 18

- (C) 81
- (D) 512

- 4. Let A be a square matrix of order 3 X 3 then |kA| is equal to
 - (A) k|A|

(B) $k^2 |A|$

- (C) $k^{3}|A|$
- (D) 3k|A|

- 5. The right hand derivative of f(x) = |x| at x = 0 is
 - (A) 1

(B) -1

(C) 0

(D) does not exist

- 6. $\int e^x \sec x (1 + \tan x) dx$
 - (A) $e^x \cos x + c$

(B) $e^x secx + c$

(C) $e^x \sin x + c$

- (D) $e^x tan x + c$
- 7. If θ is the angle between any two vectors \vec{a} and \vec{b} then $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ when θ is equal to
 - (A) 0

(B) $\frac{\pi}{4}$

 $(C)\frac{\pi}{2}$

(D) π

- 8. The equation of YZ plane is
 - (A) x = 0

(B) y = 0

- (C) x = 0 and y = 0
- (D) z=0
- 9. Corner points of the feasible region determined by the system of linear constraints are (0, 3), (1, 1),
 - (3, 0) Let z = px + qy where, q > 0. condition on p and q so that the minimum of Z occurs at
 - (3, 0) and (1, 1) is
 - (A) p = 2q

(B) $p = \frac{q}{2}$

- (C) p = 3q
- (D) p = q

II PUC (Mathematics) Mock Question Paper-1

- 10. If A and B are events such that P(A/B) = P(B/A) then
 - (A) $A \subset B$ but $A \neq B$

(B) A = B

(C) $A \cap B = \emptyset$

(D) P(A) = P(B)

II Fill in the blanks by choosing the appropriate answer from those given in the bracket $5 \times 1 = 5$

$$\left(\ 1,\frac{1}{10},\ 11,\frac{6}{\sqrt{29}}\ ,\frac{3}{25}\ \right)$$

- 11. If A is an invertible matrix of order 2 and |A| = 10 then $|A^{-1}| = \cdots$
- 12. The degree of differential equation $\left(\frac{ds}{dt}\right)^4 + 3s\frac{d^2s}{dt^2} = 0$ is -----
- 13. The distance of the plane 2x 3y + 4z 6 = 0 from the origin is -----
- 14. The slope of the tangent to the curve $y = x^3 x$ at x = 2 is -----
- 15. If $P(A) = \frac{3}{5}$ and $P(B) = \frac{1}{5}$ and if A and B are independent events then $P(A \cap B) = \cdots$

III Answer all the following questions

 $5 \times 1 = 5$

- 16. Define Symmetric Relation
- 17. Find the derivative of the function $\sin \sqrt{x}$ w. r. t x
- 18. Define Optimal solution in a linear programming problem
- 19. Find $\int secx(secx + tanx)dx$
- 20. Define collinear vectors.

PART B

Answer any NINE questions

 $9\times\ 2=18$

- 21. If $f: R \to R$ and $g: R \to R$ are given by f(x) = cosx and $g(x) = 3x^2$ find gof and fog
- 22. If $\sin\left(\sin^{-1}\frac{1}{5} + \cos^{-1}x\right) = 1$ find value of x
- 23. Write $\cot^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)$ x > 1 in simplest form
- 24. Find the values of k if area of triangle is 4 sq units and vertices are (k, 0), (4, 0) and (0, 2) using determinants
- 25. Differentiate x^{cosx} , x > 0 w.r.t x
- 26. Find $\frac{dy}{dx}$, if $\sin^2 x + \cos^2 y = 1$
- 27. Find the approximate change in the volume of a cube of side x meters caused by increasing the side by 3%.

II PUC (Mathematics) Mock Question Paper-1

- 28. Find $\int \cot x \log(\sin x) dx$
- 29. Evaluate $\int_{0}^{2/3} \frac{dx}{4+9x^2}$
- 30. Form the differential equation of the family of parabolas having vertex at origin and axis along positive y axis.
- 31. If $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = 8$ and $|\vec{a}| = 8|\vec{b}|$ find $|\vec{b}|$
- 32. Find the area of parallelogram whose adjacent sides are determined by the vectors $\vec{a} = 3\hat{\imath} + \hat{\jmath} + 4\hat{k}$ and $\vec{b} = \hat{\imath} \hat{\jmath} + \hat{k}$
- 33. Show that the lines $\frac{x-5}{7} = \frac{y-2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular to each other
- 34. A random variable X has following probability distribution

X	0	1	2	3	4
P(X)	0.1	K	2k	2k	K

Determine (i) k (ii) $P(X \ge 2)$

PART C

Answer any NINE questions

 $9\times 3=27$

- 35. Check whether the relation R in \mathbb{R} of real numbers defined as $R = \{(a, b); a \leq b^3\}$ is reflexive Symmetric, transitive
- 36. Prove that $cos^{-1}\left(\frac{4}{5}\right) + cos^{-1}\left(\frac{12}{13}\right) = cos^{-1}\left(\frac{33}{65}\right)$
- 37. By using elementary transformation find inverse of $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$
- 38. If $= a(\theta + \sin\theta)$, $y = a(1 \cos\theta)$ show that $\frac{dy}{dx} = \tan\frac{\theta}{2}$
- 39. Verify Rolles's theorem for the function $f(x) = x^2 + 2$, $x \in [-2, 2]$
- 40. Find two positive numbers x and y such that x + y = 60 and xy^3 is maximum
- 41. Evaluate $\int \frac{2x}{x^2+3x+2} dx$
- 42. Find $\int e^x \sin x \, dx$
- 43. Find the area of the region bounded by the curve $y = x^2$ and line y = 4
- 44. Find the equation of the curve passing through the point (1, 1) whose differential equation is $xdy = (2x^2 + 1)dx$ $(x \ne 0)$

3

II PUC (Mathematics) Mock Question Paper-1

- 45. Show that the position vector of a point P which divides the line joining the points A and B having Position vectors \vec{a} and \vec{b} internally in the ratio m:n is $\frac{m\vec{b}+n\vec{a}}{m+n}$
- Find λ if the vectors $\hat{i} \hat{j} + \hat{k}$, $3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + \lambda\hat{j} 3\hat{k}$ are coplanar 46.
- Find the equation of the plane through the intersection of the planes 3x y + 2z 4 = 0 and 47. x + y + z - 2 = 0 and the point (2, 2, 1)
- A die is tossed thrice find the probability of getting an odd number atleast once 48.

PART D

Answer any FIVE question

- $5 \times 5 = 25$
- Consider $f: R_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible 49. And find f^{-1}
- If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ prove that $A^3 6A^2 + 7A + 2I = 0$
- 51. Solve the following system of linear equation by matrix method x - y + 2z = 7, 3x + 4y - 5z = -5, 2x - y + 3z = 12
- If $y = e^{a\cos^{-1}x} 1 < x \le 1$ show that $(1 x^2) \frac{d^2y}{dx^2} x \frac{dy}{dx} a^2y = 0$ 52.
- A particle moves along the curve $6y = x^3 + 2$. Find the points on the curve at which the y-coordinate 53. Is changing 8 times as fast as the x-coordinate.
- Find the integral of $\sqrt{x^2 a^2}$ w. r. t x and hence evaluate $\int \sqrt{x^2 8x + 7} dx$ 54.
- Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 55.
- Solve the differential equation $\cos^2 x \frac{dy}{dx} + y = \tan x$ $\left(0 \le x < \frac{\pi}{2}\right)$ 56.
- 57. Derive equation of plane in normal form (both in vector and cartesian form)
- A die is thrown 6 times. If "getting an odd number" is a success. What is the probability of 58. (i) 5 success
- (ii) atleast 5 successes

PART E

Answer the following questions

6

59. Minimise and Maximise z = 3x + 9y

Subject to constraints
$$x+3y \leq 60$$
 , $x+y \geq 10$, $x \leq y$, $x,y \geq 0$ Or

Prove that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$ and hence evaluate $\int_0^{\frac{\pi}{2}} (2\log \sin x - \log \sin 2x)dx$ (6)

60. Show that
$$\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} = (x - y)(y - z)(z - x)(xy + yz + zx)$$

r

Find the value of k if

$$f(x) = \begin{cases} \frac{x\cos x}{\pi - 2x} & x \neq \frac{\pi}{2} \\ 3 & x = \frac{\pi}{2} \end{cases}$$
 is continuous at $x = \frac{\pi}{2}$ (4)

* * *